Тухсатăрансен таблици — чи ансат элементарлă функцисен тухсатăранĕсене йĕркепĕрĕн палăртса тухни. ("Тухсатăран" тенине çавăн пекех тăхăм , функцин тăхăмĕ теме пулать).
Кăтартакан формулăсенче
f
{\displaystyle f}
тата
g
{\displaystyle g}
— чăн аргументлă тата дифференциленекен (тухсатăранне тупма май пур) хуть те мĕнле функцисем,
c
{\displaystyle c}
— чăн константа. Ку формулăсем хуть те мĕнле элементарлă функцин тухсатăранне те тупса палăртма май параççĕ.
Ансат функцисен тухсатăранĕсем
тӳрлет
d
d
x
c
=
0
{\displaystyle {d \over dx}c=0}
d
d
x
x
=
1
{\displaystyle {d \over dx}x=1}
d
d
x
c
x
=
c
{\displaystyle {d \over dx}cx=c}
Кĕскен ăнлантарни:
(
c
x
)
′
=
c
x
′
=
c
{\displaystyle (cx)'=cx'=c}
d
d
x
x
c
=
c
x
c
−
1
,
{\displaystyle {d \over dx}x^{c}=cx^{c-1},}
енчен те
x
c
{\displaystyle x^{c}}
тата
c
x
c
−
1
{\displaystyle cx^{c-1}}
палăртăннă пулсан,
c
≠
0
{\displaystyle c\neq 0}
Кĕскен ăнлантарни:
(
x
+
h
)
c
=
x
c
+
(
x
c
)
′
h
+
o
(
h
)
{\displaystyle (x+h)^{c}=x^{c}+(x^{c})'h+o(h)}
(
x
+
h
)
c
−
x
c
=
(
x
c
)
′
h
+
o
(
h
)
{\displaystyle (x+h)^{c}-x^{c}=(x^{c})'h+o(h)}
∑
k
=
0
c
(
c
k
)
x
c
−
k
h
k
−
x
c
=
(
x
c
)
′
h
+
o
(
h
)
{\displaystyle \sum _{k=0}^{c}{c \choose k}x^{c-k}h^{k}-x^{c}=(x^{c})'h+o(h)}
x
c
+
c
x
c
−
1
h
+
∑
k
=
2
c
(
c
k
)
x
c
−
k
h
k
−
x
c
=
(
x
c
)
′
h
+
o
(
h
)
{\displaystyle x^{c}+cx^{c-1}h+\sum _{k=2}^{c}{c \choose k}x^{c-k}h^{k}-x^{c}=(x^{c})'h+o(h)}
c
x
c
−
1
h
+
∑
k
=
2
c
(
c
k
)
x
c
−
k
h
k
=
(
x
c
)
′
h
+
o
(
h
)
{\displaystyle cx^{c-1}h+\sum _{k=2}^{c}{c \choose k}x^{c-k}h^{k}=(x^{c})'h+o(h)}
c
x
c
−
1
h
+
o
(
h
)
=
(
x
c
)
′
h
+
o
(
h
)
{\displaystyle cx^{c-1}h+o(h)=(x^{c})'h+o(h)}
lim
h
→
0
(
c
x
c
−
1
+
o
(
h
)
h
)
=
lim
h
→
0
(
(
x
c
)
′
+
o
(
h
)
h
)
{\displaystyle \lim _{h\rightarrow 0}(cx^{c-1}+{\frac {o(h)}{h}})=\lim _{h\rightarrow 0}((x^{c})'+{\frac {o(h)}{h}})}
c
x
c
−
1
=
(
x
c
)
′
{\displaystyle cx^{c-1}=(x^{c})'}
d
d
x
|
x
|
=
x
|
x
|
=
sgn
x
,
x
≠
0
{\displaystyle {d \over dx}|x|={x \over |x|}=\operatorname {sgn} x,\qquad x\neq 0}
Кĕскен ăнлантарни:
|
x
|
=
x
2
{\displaystyle |x|={\sqrt {x^{2}}}}
, çавна кура çапла тейĕпĕр:
g
(
x
)
=
x
2
,
h
(
x
)
=
x
{\displaystyle g(x)=x^{2},\quad h(x)={\sqrt {x}}}
тата
f
(
x
)
=
h
(
g
(
x
)
)
=
x
2
=
|
x
|
{\displaystyle f(x)=h(g(x))={\sqrt {x^{2}}}=|x|}
Вара
f
′
(
x
)
=
h
′
(
g
(
x
)
)
⋅
g
′
(
x
)
=
1
2
x
2
⋅
2
x
=
x
x
2
=
x
|
x
|
{\displaystyle f'(x)=h'(g(x))\cdot g'(x)={\frac {1}{2{\sqrt {x^{2}}}}}\cdot 2x={\frac {x}{\sqrt {x^{2}}}}={\frac {x}{|x|}}}
d
d
x
(
1
x
)
=
d
d
x
(
x
−
1
)
=
−
x
−
2
=
−
1
x
2
{\displaystyle {d \over dx}\left({1 \over x}\right)={d \over dx}\left(x^{-1}\right)=-x^{-2}=-{1 \over x^{2}}}
d
d
x
(
1
x
c
)
=
d
d
x
(
x
−
c
)
=
−
c
x
c
+
1
{\displaystyle {d \over dx}\left({1 \over x^{c}}\right)={d \over dx}\left(x^{-c}\right)=-{c \over x^{c+1}}}
d
d
x
x
=
d
d
x
x
1
2
=
1
2
x
−
1
2
=
1
2
x
,
x
>
0
{\displaystyle {d \over dx}{\sqrt {x}}={d \over dx}x^{1 \over 2}={1 \over 2}x^{-{1 \over 2}}={1 \over 2{\sqrt {x}}},\qquad x>0}
d
d
x
x
n
=
d
d
x
x
1
n
=
1
n
x
1
−
n
n
=
1
n
⋅
x
n
−
1
n
{\displaystyle {d \over dx}{\sqrt[{n}]{x}}={d \over dx}x^{1 \over n}={1 \over n}x^{1-n \over n}={\frac {1}{n\cdot {\sqrt[{n}]{x^{n-1}}}}}}
Экспонентăлла тата логарифмла функцисен тухсатăранĕсем
тӳрлет
Тригонометрилле тата кутăнла тригонометрилле функцисен тухсатăранĕсем
тӳрлет
d
d
x
cos
x
=
−
sin
x
{\displaystyle {d \over dx}\cos x=-\sin x}
d
d
x
tg
x
=
sec
2
x
=
1
cos
2
x
=
tg
2
x
+
1
{\displaystyle {d \over dx}\,\operatorname {tg} \,x=\sec ^{2}x={1 \over \cos ^{2}x}=\operatorname {tg} ^{2}x+1}
d
d
x
ctg
x
=
−
cosec
2
x
=
−
1
sin
2
x
{\displaystyle {d \over dx}\,\operatorname {ctg} \,x=-\,\operatorname {cosec} ^{2}\,x={-1 \over \sin ^{2}x}}
d
d
x
sec
x
=
tg
x
sec
x
{\displaystyle {d \over dx}\sec x=\,\operatorname {tg} \,x\sec x}
d
d
x
cosec
x
=
−
ctg
x
cosec
x
{\displaystyle {d \over dx}\,\operatorname {cosec} \,x=-\,\operatorname {ctg} \,x\,\operatorname {cosec} \,x}
d
d
x
arcsin
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\arcsin x={1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arccos
x
=
−
1
1
−
x
2
{\displaystyle {d \over dx}\arccos x={-1 \over {\sqrt {1-x^{2}}}}}
d
d
x
arctg
x
=
1
1
+
x
2
{\displaystyle {d \over dx}\,\operatorname {arctg} \,x={1 \over 1+x^{2}}}
d
d
x
arcctg
x
=
−
1
1
+
x
2
{\displaystyle {d \over dx}\,\operatorname {arcctg} \,x={-1 \over 1+x^{2}}}
d
d
x
arcsec
x
=
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}\operatorname {arcsec} x={1 \over |x|{\sqrt {x^{2}-1}}}}
d
d
x
arccosec
x
=
−
1
|
x
|
x
2
−
1
{\displaystyle {d \over dx}\,\operatorname {arccosec} \,x={-1 \over |x|{\sqrt {x^{2}-1}}}}
Гиперболăлла функцисен тухсатăранĕсем
тӳрлет
d
d
x
sh
x
=
ch
x
{\displaystyle {d \over dx}\,\operatorname {sh} \,x=\,\operatorname {ch} \,x}
d
d
x
ch
x
=
sh
x
{\displaystyle {d \over dx}\,\operatorname {ch} \,x=\,\operatorname {sh} \,x}
d
d
x
th
x
=
sech
2
x
{\displaystyle {d \over dx}\,\operatorname {th} \,x=\,\operatorname {sech} ^{2}\,x}
d
d
x
sech
x
=
−
th
x
sech
x
{\displaystyle {d \over dx}\,\operatorname {sech} \,x=-\operatorname {th} x\,\operatorname {sech} \,x}
d
d
x
cth
x
=
−
csch
2
x
{\displaystyle {d \over dx}\,\operatorname {cth} \,x=-\,\operatorname {csch} ^{2}\,x}
d
d
x
csch
x
=
−
cth
x
csch
x
{\displaystyle {d \over dx}\,\operatorname {csch} \,x=-\,\operatorname {cth} \,x\,\operatorname {csch} \,x}
d
d
x
arsh
x
=
1
x
2
+
1
{\displaystyle {d \over dx}\,\operatorname {arsh} \,x={1 \over {\sqrt {x^{2}+1}}}}
d
d
x
arch
x
=
1
x
2
−
1
{\displaystyle {d \over dx}\,\operatorname {arch} \,x={1 \over {\sqrt {x^{2}-1}}}}
d
d
x
arth
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arth} \,x={1 \over 1-x^{2}}}
, при
|
x
|
<
1
{\displaystyle |x|<1}
d
d
x
arsech
x
=
−
1
x
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arsech} \,x={-1 \over x{\sqrt {1-x^{2}}}}}
d
d
x
arcth
x
=
1
1
−
x
2
{\displaystyle {d \over dx}\,\operatorname {arcth} \,x={1 \over 1-x^{2}}}
, при
|
x
|
>
1
{\displaystyle |x|>1}
d
d
x
arcsch
x
=
−
1
|
x
|
1
+
x
2
{\displaystyle {d \over dx}\,\operatorname {arcsch} \,x={-1 \over |x|{\sqrt {1+x^{2}}}}}
Пĕтĕмĕшле фунцисен тухсатăранне тупасси
тӳрлет
(
c
f
)
′
=
c
f
′
{\displaystyle \left({cf}\right)'=cf'}
(
f
+
g
)
′
=
f
′
+
g
′
{\displaystyle \left({f+g}\right)'=f'+g'}
(
f
−
g
)
′
=
f
′
−
g
′
{\displaystyle \left({f-g}\right)'=f'-g'}
(
f
g
)
′
=
f
′
g
+
f
g
′
{\displaystyle \left({fg}\right)'=f'g+fg'}
(Лейбниц формулин уйрăм палăрăвĕ)
(
f
g
)
′
=
f
′
g
−
f
g
′
g
2
,
g
≠
0
{\displaystyle \left({f \over g}\right)'={f'g-fg' \over g^{2}},\qquad g\neq 0}
(
f
g
)
′
=
(
e
g
ln
f
)
′
=
f
g
(
f
′
g
f
+
g
′
ln
f
)
,
f
>
0
{\displaystyle (f^{g})'=\left(e^{g\ln f}\right)'=f^{g}\left(f'{g \over f}+g'\ln f\right),\qquad f>0}
(
f
(
g
(
x
)
)
)
′
=
f
′
(
g
(
x
)
)
⋅
g
′
(
x
)
{\displaystyle (f(g(x)))'=f'(g(x))\cdot g'(x)}
— Хутлă функцин тухсатăранне тупасси
f
′
=
(
ln
f
)
′
f
,
f
>
0
{\displaystyle f'=(\ln f)'f,\qquad f>0}
(
f
c
)
′
=
c
(
f
c
−
1
)
f
′
{\displaystyle (f^{c})'=c\left(f^{c-1}\right)f'}