Ушкăн (математика)
Ушкăн математикăра — ассоциативлă тата бинарлă операци палăртнă пушă мар йыш, асăннă операцишĕн нейтраллă элемент пур (хутлав тĕлĕшĕнчи пĕррен аналогĕ), йышăн кашни элеменчĕн кутăнла элемент пур. пĕрлехи алгебрăн çакнашкал ушкăнсене тишкерекен туратне йышсен теорийĕ теççĕ[1].
Ку терминăн урăх пĕлтерĕшсем пур, Ушкăн пăхăр.
Çав. пекех
тӳрлетАсăрхавсем
тӳрлет- ^ Каргаполов М. И., Мерзляков Ю.И. Основы теории групп. — 3-е изд.. — Москва: Наука, 1982. — С. 16. — 288 с. — 11 800 экз.
Литература
тӳрлетĂслăх литератури
тӳрлет- Белоногов В. А. Задачник по теории групп. М.: Наука, 2000.
- Каргаполов М. И., Мерзляков Ю. И. Основы теории групп. М.: Наука, 1982.
- Кострикин А. И. Введение в алгебру. М.: Наука, 1977.
- Курош А. Г. Теория групп. (3-е изд.). М.: Наука, 1967.
- Холл М. Теория групп. М.: Издательство иностранной литературы, 1962.
- Gorenstein D. Finite groups. N.Y.: Harper and Row, 1968.
- Huppert B. Endliche Gruppen. I.B.: Springer, 1967.
Популярлă литература
тӳрлет- Александров П. С. Введение в теорию групп. — Т. 7. — («Библиотечка Квант»).
- Садовский Л., Аршинов М. Группы // Квант. — 1976. — № 10.
- Группа // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 88—94. — 352 с.